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The Behavior, Constraint, and Scenario (BeCoS) tool has been developed to allow 

engineers to specify system and component behaviors.  The tool is a web application that is 

developed in JavaScript and uses the React framework for the user interface and Redux for 

maintaining application state.  The foundation of the tool is its underlying ontology, which 

expands upon a previously-defined behavior ontology with a scenario ontology.  The behavior 

ontology includes elements like behaving elements, state variables, parameters, and 

constraints, while the scenario ontology includes core constructs like activities, temporal 

constraints, and timepoints.  BeCoS allows users to easily create behaving elements and to 

specify their state variables, parameters, state machines, and constraints.  BeCoS also allows 

users to develop temporal constraint networks that specify constraints on component states 

over time.  BeCoS is a prototype tool that has been deployed and tested by systems engineers 

on the Europa Clipper project, which generated several use cases and helped steer its current 

developmental effort.  By enabling systems engineers to specify behavior in a semantically-

rigorous manner, BeCoS is an enabling technology for analyses that previously could not be 

performed, and when exporting its model to other tools, allows for consistent behavior models 

to be used. 

I. Nomenclature 

APGEN = Activity Plan Generator 

BeCoS = Behavior, Constraint, and Scenario tool 

COTS = Commercial-off-the-shelf 

FDD = Functional Description Documents 

IMCE = Integrated Model-Centric Engineering 

MBSE = Model-Based Systems Engineering 

II. Introduction 

ehavior is a critical aspect of robotic spacecraft that engineers must characterize.  Behaviors of individual 

components aggregate into the system behaviors needed to complete the mission.  These characterizations of 

behavior, captured in the form of a behavioral system model, can be used for many different purposes, including the 

many analyses of the spacecraft system that are needed across the engineering lifecycle (e.g. power/energy or data 

analyses to name a few).  Moreover, accurate and complete descriptions of behavior in the development phase of the 

lifecycle are needed so that engineers can develop and implement the flight software and hardware according to a 

specification. 

 In its simplest description, behavior is defined by state variable properties of a particular system component and 

the values that they have over time.  Behavior can be classified into either intrinsic or scenario behavior.  Intrinsic 

behavior describes the inherent dynamics/physics of a component, that is, all the ways that its state can change under 
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the influence of other component states and inputs.  Prior work has represented intrinsic behavior in the form of “state 

effects models” [1].  One example of intrinsic behavior is power consumed by a lightbulb, which is calculated from 

the current and a voltage drop through the element.  Scenario behavior, on the other hand, is a type of asserted, or 

control, behavior that captures a particular evolution of the component’s or system’s state over time, and can be 

represented either declaratively (goal-based) or imperatively (procedure-based).  A declarative approach focuses on 

what needs to be accomplished whereas an imperative approach focuses on how it is accomplished.  Traditionally in 

spacecraft design, scenario behavior has been imperatively defined, and indeed many simulation tools and 

programming languages support the expression of imperative logic to describe asserted behavior.  However, this 

approach has become cumbersome with increasingly complex systems and it has the limitation that operational intent 

has to be inferred.  A declarative, goal-based, expression of scenario behavior is preferable as it explicitly describes 

intent (through goals) without necessarily describing how it is accomplished, and ultimately produces a specification 

of behavior that is completely verifiable [2, 3].   

To date, behaviors on NASA/JPL’s robotic spacecraft have been described by systems engineers primarily through 

Functional Description Documents (FDDs), in which behaviors are described textually or through informal visual 

representations without further semantic meaning.  This has led to discrepancies in their descriptions and, as an 

example, has led to differences in interpretations between the systems engineers and flight software developers.  

However, the adoption of Model-Based Systems Engineering (MBSE) presents an opportunity to model behaviors 

and scenarios in a semantically-rigorous manner.  Doing so early in the project lifecycle enables the systems engineer 

to perform analyses and to link behavior models directly to other systems engineering tools.  For example, behavior 

captured in state machines could be exported to a third party execution tool to perform state reachability analyses, and 

behavior information including scenarios could be exported to a mission planning tool that elaborates and schedules 

activities and produces component state timelines that are ready to be executed. 

However, modeling behaviors and scenarios in existing standard languages like SysML using commercial off-the-

shelf (COTS) modeling tools is a tedious process, largely because these tools have so many features (most of which 

are not relevant to behavior modeling) that they are cumbersome for non-expert users.  Developing behavior models 

using COTS SysML modeling tools results in many user mouse-clicks even for a simple behavior model.  In addition, 

the semantics of SysML are not readily amenable to describing temporal constraint networks as one may want to do 

for scenarios.  To address such limitations in standard languages and tooling, a web-based application – the Behavior, 

Constraint, and Scenario (BeCoS) tool – has been developed as a front-end for behavior modeling and specification.  

BeCoS is a currently a functioning prototype that has been tested by select systems engineers on NASA/JPL’s planned 

Europa Clipper mission. 

III. Ontology 

An ontology has been developed to sufficiently express the concepts within behavior modeling, and to provide an 

underlying schema for the BeCoS tool.  This ontology expands upon a previously-defined behavior ontology [4], 

which describes the intrinsic behavior of components (shown in the top of Figure 1).  Briefly, components that have 

behavior are called behaving elements, and are associated with state variables (variables whose value is time-varying, 

such as power consumed by the behaving element) and parameters (variables whose value is time invariant, such as 

resistance).  Element behaviors also describe behaving elements.  These are a type of behavior constraint that relate 

the state variables and parameters associated with a given behaving element.  In addition, a state variable can be linked 

to a state machine, as might be the case for a Switch behaving element that can have an Open and Closed state.  A 

state machine has one or more states (discrete state variable values), which themselves can participate in constraints 

(StateBehavior) involving state variables and parameters associated with the selected behaving element.  States are 

connected with transitions and can have triggers (a command or event that must happen for the transition to execute) 

and/or guards (constraints that must be true for the transition to execute). 

A scenario ontology (shown in the bottom half of Figure 1) was developed to describe and specify coordination of 

behaviors over time and is grounded in a timeline representation [5].  The ontology that has been developed enables 

the user to express intent in a purely declarative form rather than in an imperative fashion (i.e. a step-by-step, 

procedural approach).  A primary construct of this ontology is the elaboration rule, or just “rule”.  Elaboration rules 

express recursive dependencies between goals such that the invocation of a parent goal implies the indirect invocation 

of its elaborated dependents.  Prior work has defined a set of elaboration rules based on causal dependencies in state 

effects models [1].  Thus, the primary goals of a mission or activity are decomposed into subgoals that constrain what 

and when something needs to happen without having to prescribe a strict procedure.  These rules contain activities 

and temporal constraints, which are constraints between two timepoints, and can specify either that the two timepoints 

occur at the same time (i.e. an “equals” temporal constraint) or that one timepoint precedes the other by an exact time 



or time range (e.g. a “precedes” temporal constraint).  Activities are composed of a start and end timepoint, and can 

assert goals through state constraints and/or schedulable constraints, which are both types of behavior constraints 

(from the behavior ontology).  State constraints assert the state variable that is associated with a state machine is in a 

specific state for the duration of the activity (e.g. “SwitchPosition = Closed” is a state constraint, where 

“SwitchPosition” is the state variable and “Closed” is the state).  Schedulable constraints are identical to element 

behaviors (from the behavior ontology) with the exception that these constraints apply only during the specified 

activity.   

 

 
Fig. 1  The ontology used by BeCoS to describe behavior modeling was developed from an existing behavior 

ontology [4] and a new scenario ontology that is grounded in the timeline representation [5]. 

 

This scenario ontology expresses assertions about behavior over time that can represent different semantics 

including engineering/control intent, observed history, or asserted conditions (e.g. fault conditions).  Although BeCoS, 

which implements a behavior model adhering to the scenario ontology, does not directly perform any particular 

analysis, the specification is intended to support design/plan analyses that need to reason about the consistency of 

asserted intent in the context of intrinsic behavior (constraints that can’t be relaxed), plan objectives (that can be 

relaxed or changed), and other asserted facts such as fault conditions. 



The combined ontology contains all the constructs necessary for modeling behavior and scenarios.  It is the meta-

model used in BeCoS and in data exchange into and out of the tool.  While the behavior ontology has been approved 

and is institutionally-supported, the scenario ontology described here has yet to be formalized, and it may be subject 

to modification and simplification during the approval process.    

IV. Implementation 

BeCoS is a web application that has been developed for behavior modeling.  A guiding principle used during the 

app’s development has been to ensure models are “correct by construction”, which is enforced through validation 

checks throughout the app.  A second guiding principle has been to present the user with only the relevant information 

for a given scope.  The website is a Node.js app6 that uses the React framework7, which is a popular framework for 

user interfaces and was chosen due to the developer’s familiarity with it.  The Redux library8 is used in conjunction 

with React for application state management.  A single, immutable, read-only state-tree is maintained; when users 

interact with the app, actions are dispatched to pure functions (i.e. reducers) that update the state-tree.   

A JSON file9 is the data exchange format for model information, which uses a schema adhering to the ontology.  

The JSON file can be retrieved either from the local file system or a remote server database.  Once a model is loaded 

into BeCoS, it persists and is manipulated entirely in the browser’s memory until the model is again saved or exported 

as a JSON file.   

Figure 2 shows the splash page for BeCoS tool.  Four buttons (tabs) at the top of the app, named “Elements”, 

“Interactions”, “State Machines”, and “Scenario”, define the four sections of the app, which are used to build behavior 

models.  The app is described in the following sections, and a simple example of a circuit is used to illustrate the app’s 

capability.  This example has four behaving elements: a battery, switch, lamp, and controller.  In order to illuminate 

the lamp, the controller must be on and the switch must be closed.    

 

 
Fig. 2  Splash page of the BeCoS tool. 

 

 In the Elements tab, the user creates and/or edits behaving elements as well as the parameters and state variables 
associated with each.  The Elements tab is shown in Figure 3 and displays a Lamp behaving element.  As previously 

discussed, parameters, such as “Luminous Efficacy”, have values that are time invariant, whereas state variables, such 

as “VoltageAcrossLamp”, have values that vary with time.  Attributes for each of these, such as descriptions, values, 

units, and symbols, are easily editable through a Bootstrap table10. 
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 Behavior constraints, such as “Lumen Output”, are also created in the Elements tab through a constraint editor 

(Figure 4).  This editor is presented when the user selects the “Edit” button in the constraint table of the Elements tab.  

The constraint editor is scoped appropriately and presents only the state variables and parameters associated with the 

currently-selected behaving element, which is the Lamp in Figure 4.  The user can easily create a symbolic expression 

by selecting the “+” icon, which adds the variable’s symbol to the text box, or by typing the equation directly into the 

text box.  If the user types a variable that is non-existent or is not associated with the selected behaving element, a 

validation error is issued and the user will not be able to save the constraint. 

 

 
Fig. 3  Behaving elements, as well as their state variables, parameters, and constraints, are defined in the 

BeCoS Elements tab.  A Lamp behaving element is shown in this example model of a circuit. 

 

 
Fig. 4  The constraint editor allows the user to create constraints with state variables and parameters 

scoped to the selected Behaving Element. 

 

The Interactions and State Machines tabs allow the user to further define the intrinsic behavior of components.  

Interactions are defined as constraints that involve state variables and/or parameters from more than one behaving 

element.  In the circuit example, Kirchoff’s voltage law would be one such interaction.  In the Interactions tab, the 

user selects all behaving elements that are involved with a specific interaction, and then creates one or more constraints 



using the constraint editor from Figure 4.  However, the editor is now scoped to include state variables and parameters 

from all behaving elements associated with the interaction.   

The State Machines tab (Figure 5) allows the user to define state machines for state variables that are associated 

with state machines, including states, transitions, constraints (on states), triggers, and guards.  In the circuit example, 

the Switch behaving element has a state variable called “SwitchPosition” that is associated with a state machine.   It 

has the following behavior: a switch in its Closed state is characterized by the constraint “deltaV=0”, and can transition 

to its Open state upon receipt of an “OPEN” command; a switch in its Open state is characterized by the constraint 

“i=0”, and can transition to its Closed state upon receipt of a “CLOSE” command. The visual representation of state 

machines uses the D3 library11 [11], so the user can graphically add, remove, and rename states, as well as specify 

transitions between states.  The user can add other information to the state machine, such as state constraints, guards 

and triggers, by selecting the appropriate entity and using the Bootstrap table editor below the D3 visualization.  Once 

defined, constraints will appear in the state icon and the triggers and guards will appear on their respective transitions 

in the “Trigger [ {Guard}]” syntax.  Multiple state constraints and guards can be defined and they are cumulatively 

interpreted with the logical “AND”. 

 

 
Fig. 5  Users specify state machines through a graphical editor in the State Machines tab.  Additional 

information, such as state constraints and transition guards and triggers, can be added by selecting an entity 

and using the table editor. 

 

Finally, in the Scenarios tab (Figure 6), the user declaratively specifies a component’s behavior (i.e. its state) within 

a temporal constraint network [6].  In the example shown in Figure 6, a rule is developed that turns the lamp on.  

Initially, the switch is Open and the controller is turned Off.  After five seconds, the controller is turned to Standby, 

and 10 to 15 seconds later, the controller is turned On and simultaneously the switch is Closed.  After 30 seconds, the 

Controller is turned back to Standby, and the switch is simultaneously Opened.   

Like the State Machine tab, the primary workspace of the Scenario tab is created using the D3 library.  Users create 

rules in this tab and add execution contexts, which representing a behaving element, to them by selecting the “+” icon 

next to the behaving elements listed in the containment tree.  The elements that compose a rule (i.e. activities, 

timepoints, and temporal constraints) are added to the execution contexts by selecting the appropriate icon for a given 
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element, and then clicking inside the rule workspace.  Activities and precedes temporal constraints are editable within 

the Inspector pane (Figure 7), where a name, state constraint, or schedulable constraint can be added to an activity or 

a minimum and maximum duration can be added to a precedes temporal constraint.  For the latter, these durations are 

displayed on the temporal constraints in the “[min, max]” syntax (e.g. “[10, 15]”), which indicates the subsequent 

timepoint occurs between 10 and 15 seconds after the preceding timepoint.  Such a temporal range is acceptable, and 

expected, when specifying rules declaratively, and the timepoints are only grounded when the BeCoS model is 

exported to a scheduler downstream in the workflow.   

 

 
Fig. 6  The Scenario tab is where users can build a temporal constraint network and declaratively assert how 

component states evolve over time. 

 



 
Fig. 7  In constructing a rule, users can add a name, state constraint, or schedulable constraint to an activity 

through the inspector pane, which is displayed on the right side of the Scenario tab. 

V. Status and Future Work 

 While the BeCoS tool is currently a prototype, it has been the focus of multiple years of development and 

maturation.  Select systems engineers on the planned Europa Clipper mission have tested the deployed BeCoS tool 

and have provided feedback.  This feedback has informed use cases that are important to consider for a production 

tool, and software bugs and tool improvements identified from these use cases are the focus of the current 

developmental effort.   

 In addition to these improvements, substantial effort will be applied this fiscal year to connect BeCoS with a JPL-

developed activity scheduler and plan generator (APGEN [7]), and Europa Clipper data will be used as a test case.  

APGEN is currently being used on several flight projects, and on Europa Clipper, it is the primary tool for producing 

activity timelines.  Behaviors and rules are specified in the APGEN project adaptation layer, which serves as the 

“input” to APGEN; an APGEN modeler manually programs this adaptation layer by interpreting behaviors from a 

variety of sources including Excel spreadsheets, PowerPoint slides, emails, and verbal conversations.  Upon execution, 

APGEN schedules activities throughout the mission resulting in activity timelines for each modeled component.  One 

persistent issue with the tool is the unverifiability of the modeled system behavior.  Verifiable behaviors are 

particularly needed for this tool since the manual interpretation of behavior in creating the adaptation layer can lead 

to an erroneous implementation.  Currently, the only way a systems engineer verifies the APGEN model is by either 

analyzing its outputs, which by definition is not verifying the modeled behavior (the inputs), or by inspecting the 

adaptation layer, which is rarely undertaken as very few systems engineers can understand APGEN code (and even if 

they could, it is in the form of distributed imperative logic, which is inherently hard to review).  A more ideal and 

robust approach involves the systems engineer directly specifying behavior in the BeCoS tool, which can be easily 

inspected and verified.  This model would be exported to the APGEN adaptation layer, and would be automatically 

transformed to populate behaviors in the required syntax.  This new workflow requires agreement on the type and 

form of information being exchanged, and requires modifications to APGEN so that it accepts declaratively-specified 
rules instead of its usual imperatively-specified scenarios. 

 Another long-term issue that needs to be reconciled in BeCoS is type versus instance.  A type can have many 

instances.  Each instance inherits behavior that is defined on the type, while each instance can be in a state that is 

different from another instance.  For example, a spacecraft uses a particular reaction wheel model that has a defined 

behavior – this behavior would be defined on the reaction wheel type.  Typically a spacecraft will have four instances 

of this reaction wheel.  Each instance inherits behavior defined on the reaction wheel type (so the behavior is only 



defined once), while each instance can be in a different state (e.g. three of the instances can be in a high-speed state 

while the fourth instance is off).  Thus in BeCoS, the intrinsic behavior specified in the Element and State Machine 

tabs should be specified on the type, while rules should specify behavior on instances.  However, the current 

implementation of BeCoS does not distinguish between type and instance; thus it is assumed that everything in BeCoS 

is an instance.  This is acceptable in the short-term and implies that all behavior must be duplicated for multiple 

instances that would have otherwise originated from a single type.   

VI. Conclusion 

The BeCoS tool is a web application that was developed to enable systems engineers to easily and rigorously 

specify behaviors and scenarios in a semantically-meaningful manner.  This detail of modeling has yet to be performed 

on flight projects earlier in their lifecycle, and doing so enables new model-checking analyses, such as state 

reachability analyses or analyses that ensure rules are acyclic graphs.  Additionally, this tool allows behaviors and 

scenarios to be viewable and verifiable, and ultimately exported to scheduling or simulation tools, which ensures the 

behaviors being analyzed are always consistent.   
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